Rolling mills for copper wire

Increased productivity!

Copper flat wires rolled with turks heads
FUHR Mills & COPPER

• **Example**
 – Shaped wires for commutators
FUHR Mills & COPPER

- Example
 - Trolley wires for trains
FUHR Mills & COPPER

- **Example**
 - Flat wires for electrical transformers, motors, generators,
Magnet wire applications

- **Insulated Winding Wires**
 - single or multi-flat wire conductor
 - enameled or film insulated
 - used in transformers, motors, generators ...
Magnet wire applications

- **Insulation types**
Magnet wire applications

- **Continuously Transposed Conductors (CTC)**
 - stranded multiple flat wire conductor
 - enameled or film insulated
 - used in transformers, motors, generators ...
Magnet wire specifications

• **International standards IEC60317-... define:**
 – electrical properties
 • conductivity
 • insulation quality ...
 – mechanical properties
 • tensile strength ...
 – Dimensions
 • thickness and width
 • corner radii
 • tolerances
Traditional rolling process

- Round wire as raw material
- Optional in-line drawing
- Flat and edge rolling
- Spooling
Traditional rolling process

- **Disadvantages**
 - low width accuracy (e.g. > +/- 0.02 mm)
 - low straightness of lateral sides
 - low radius accuracy
Traditional rolling process

• **Disadvantages**
 – low width accuracy (e.g. > +/- 0,02 mm)
 – low straightness of lateral sides
 – low radius accuracy

• **Problems in enameling with dies**
 – irregular thickness of enameling layer

• **Problems in enameling without dies**
 – today’s requirements on precision can not be fulfilled
Calibration with dies

- **Advantages**
 - simple machinery
 - stable process
 - high precision

- **Disadvantages**
 - low speed
 - high tool costs because of
 - excessive wear of dies
 - great number of wire dimensions
Standardized sizes

<table>
<thead>
<tr>
<th>Nennbreite d_1 des blanken Drahtes</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.12</th>
<th>1.25</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2</th>
<th>2.24</th>
<th>2.5</th>
<th>2.8</th>
<th>3.15</th>
<th>3.55</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kantenradius $r = \frac{s_1}{2}$</td>
<td></td>
</tr>
<tr>
<td>Kantenradius $r = 0.5$</td>
<td></td>
</tr>
<tr>
<td>Kantenradius $r = 0.8$</td>
<td></td>
</tr>
<tr>
<td>Kantenradius $r = 1$</td>
<td></td>
</tr>
<tr>
<td>Nennquerschnitte in mm²</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.463</td>
<td>1.626</td>
<td>1.785</td>
<td>2.025</td>
<td>2.285</td>
<td>2.585</td>
<td></td>
</tr>
<tr>
<td>2,24</td>
<td>1.655</td>
<td>1.842</td>
<td>2.025</td>
<td>2.294</td>
<td>2.585</td>
<td>2.921</td>
<td>3.389</td>
<td></td>
</tr>
<tr>
<td>2,8</td>
<td>2.103</td>
<td>2.346</td>
<td>2.585</td>
<td>2.921</td>
<td>3.285</td>
<td>3.705</td>
<td>4.265</td>
<td>4.677</td>
<td>5.237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.865</td>
<td>11.04</td>
<td>12.39</td>
<td>14.19</td>
<td>15.84</td>
<td>17.54</td>
<td>19.80</td>
<td>21.95</td>
<td>24.65</td>
<td>27.80</td>
<td>31.40</td>
<td>35.14</td>
<td>39.64</td>
<td>44.14</td>
<td>49.54</td>
<td>55.14</td>
<td>61.86</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12.29</td>
<td>13.79</td>
<td>15.79</td>
<td>17.64</td>
<td>19.64</td>
<td>22.04</td>
<td>24.45</td>
<td>27.45</td>
<td>30.95</td>
<td>34.95</td>
<td>39.14</td>
<td>44.14</td>
<td>49.14</td>
<td>55.14</td>
<td>61.86</td>
<td>68.14</td>
<td>75.54</td>
<td></td>
</tr>
<tr>
<td>11,2</td>
<td>15.47</td>
<td>17.71</td>
<td>19.80</td>
<td>22.94</td>
<td>24.73</td>
<td>27.45</td>
<td>30.81</td>
<td>34.73</td>
<td>39.21</td>
<td>43.94</td>
<td>49.54</td>
<td>55.14</td>
<td>61.86</td>
<td>68.14</td>
<td>75.54</td>
<td>83.14</td>
<td>91.14</td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td>19.79</td>
<td>22.14</td>
<td>24.64</td>
<td>27.64</td>
<td>30.70</td>
<td>34.45</td>
<td>38.83</td>
<td>43.83</td>
<td>49.14</td>
<td>55.14</td>
<td>62.14</td>
<td>69.14</td>
<td>77.54</td>
<td>86.74</td>
<td>97.14</td>
<td>108.14</td>
<td>119.14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>24.84</td>
<td>27.54</td>
<td>31.00</td>
<td>34.45</td>
<td>38.66</td>
<td>43.55</td>
<td>49.14</td>
<td>55.14</td>
<td>62.14</td>
<td>70.45</td>
<td>79.14</td>
<td>88.14</td>
<td>99.14</td>
<td>111.1</td>
<td>124.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>31.64</td>
<td>35.48</td>
<td>39.45</td>
<td>44.25</td>
<td>49.85</td>
<td>56.25</td>
<td>63.14</td>
<td>71.14</td>
<td>79.14</td>
<td>88.74</td>
<td>99.94</td>
<td>111.1</td>
<td>124.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>39.96</td>
<td>44.45</td>
<td>49.85</td>
<td>56.15</td>
<td>63.35</td>
<td>71.14</td>
<td>80.14</td>
<td>89.14</td>
<td>99.94</td>
<td>111.1</td>
<td>124.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>49.45</td>
<td>55.45</td>
<td>62.45</td>
<td>70.45</td>
<td>79.14</td>
<td>88.14</td>
<td>99.14</td>
<td>111.1</td>
<td>124.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,4</td>
<td>62.17</td>
<td>70.01</td>
<td>78.97</td>
<td>88.74</td>
<td>99.94</td>
<td>111.1</td>
<td>124.6</td>
<td></td>
</tr>
</tbody>
</table>

Nennquerschnitte in mm².
Universal turks head

• **Alternative to edge rolling and shaped dies**
 – Adjustable
 • one set of rolls covers all dimensions
 • compensation of wear, heat expansion of rolls and wire springback by roll adjustment
 – Rolling contact instead of sliding
 • uncritical lubrication
 • higher speeds
Two high mill <-> Turks head
Two high mill <> Turks head
Two high mill ↔ Turks head
Universal turks head calibration

- **Comparison with edgerolling**
 - Better width accuracy
 - Straight sides
 - More precise radii

- **Comparison with shape drawing:**
 - Higher speed
 - Less wear
 - Adjustable dimensions
Production facts

• The following process parameters have been reached*:
 – Speed: 500 m/min
 – Accuracy: +/- 0.005 mm

* depending on size
Rolling mills for copper

Increased productivity!

Copper flat wires rolled with turks heads